작성일
2025.04.03
수정일
2025.04.03
작성자
뉴그로호 아빌리아 쿠수마푸테리
조회수
7

Deep Learning-Assisted Microservice Deployment Strategy for 3-Tier Edge Computing Environments

Edge computing is a promising paradigm for enabling low-latency and intelligent services closer to end users. To address increasing demands for real-time responsiveness and scalability, microservice architectures are implemented, enabling applications to be divided and deployed flexibly across edge layers. However, optimal task allocation and resource management remain major challenges in this dynamic environment. Microservice Architecture (MSA) offers a modular design framework compatible with the characteristics of edge computing. In addition, it allows scalability, fault tolerance, and continuous delivery by dividing applications into loosely linked and independently deployable services. These services can be effectively deployed across edge nodes depending on latency, computation demands, and data requirements.

 

The current research proposes a traffic-aware optimal association and task-offloading architecture optimized for microservice-based edge computing. The proposed approach utilizes a high-precision prediction model for estimating future offloading requests rather than depending on average offloading rates, allowing more accurate resource provisioning for distributed microservices. An optimization-based scheduling approach is introduced to ensure that microservice tasks comply with strict deadlines necessary for task-critical services. Furthermore, the framework allocates computational loads across multiple time steps, enabling adaptive task-offloading decisions that correspond with the dynamic environment. While this framework provides a solid foundation, it still exhibits several limitations. The system depends on pre-learned patterns and lacks real-time adaptability to sudden shifts, which happen frequently in real-world implementation. The decision-making process focuses on short-term optimization, overlooking the long-term impact of present actions. The lack of a feedback mechanism reduces the ability of the system to learn from previous outcomes, and manual parameter adjustment could limit its utility across various workloads and deployment scenarios.

 

To overcome these limitations and enhance adaptability, we propose a deep reinforcement learning (DRL) approach using the Deep Deterministic Policy Gradient (DDPG) algorithm. This method formulates microservice deployment as a multi-x-objective optimization problem (MOMDP), aiming to minimize interaction costs while maximizing edge resource utilization. Compared to static models, DDPG enables the system to learn directly through continuous interaction with the environment, allowing it to respond to real-time changes. To enhance policy learning and ensure efficiency, expert interventions are integrated to guide resource and service allocation, enabling the agent to avoid suboptimal decisions and achieve faster convergence. As a result, the learning process achieves significantly faster convergence. Comprehensive simulation experiments are conducted to validate the effectiveness of the proposed approach.

학위연월
2025년 8월
지도교수
김태운
키워드
Edge Computing, Microservice Deployment, Deep Learning, Deep Reinforcement Learning, DDPG, Expert Intervention, Resource Optimization
소개 웹페이지
https://sites.google.com/view/avilianugroho
첨부파일
첨부파일이(가) 없습니다.
다음글
Optimizing User Pairing and Power Allocation for OMA-NOMA Enabled Urban Vehicular Networks
아라빈 바라라만 2025-04-04 14:17:00.35
이전글
GVMambaIR: Graph Vison Mamba for Image Restoration with State-Space Model
리엔 홍키 2025-04-03 10:15:11.187
RSS 2.0 785
게시물 검색
석사학위논문
번호 제목 작성자 작성일 첨부파일 조회수
785 Lightweight Time Series Forecasting with LLMs: Le 새글 코난 루스 엠마누엘레 비투아 2025.04.04 0 18
784 블록체인과 CMAC 검증을 통한 전기차 배터리 관리 시스템의 데이터 신뢰성 확보 방안 설계 새글 김재현 2025.04.04 0 7
783 Optimizing User Pairing and Power Allocation for O 새글 아라빈 바라라만 2025.04.04 0 6
782 Deep Learning-Assisted Microservice Deployment Str 새글 뉴그로호 아빌리아 쿠수마푸테리 2025.04.03 0 7
781 GVMambaIR: Graph Vison Mamba for Image Restoration 새글 리엔 홍키 2025.04.03 0 15
780 드론을 활용한 실시간 원격 흘수 정밀 계측 프레임워크 새글 박찬일 2025.04.02 0 10
779 Mamba-Attention Surface Analysis for Brain Develop 새글 짠시닷 2025.04.02 0 23
778 Multi-Query Retrieval Augmented Generation (RAG) f 새글 리잘디 파흐미 2025.04.02 0 24
777 BLSM-Tree: 블록체인 데이터의 효율적인 범위 탐색을 위한 인덱스 구조 새글 이병영 2025.04.02 0 10
776 전이학습을 통한 사전 학습된 오디오 뉴럴 넷 기반 효과음 분류 및 자동 자막 생성 시스템 새글 정혜윤 2025.04.01 0 26
775 Federated Domain Generalization with On-Server Gra 새글 응우옌쫑빈 2025.04.01 0 31
774 Virtual Screening in a Large Compound Library with 새글 배종현 2025.04.01 0 27
773 텍스트 종속 화자 검증을 위한 경량 딥러닝 모델의 설계 및 구현 새글 신채림 2025.03.31 0 44
772 실내 NLOS 환경에서 RTLS 정확도 향상을 위한 편향 및 편차 맵 기반 가중 그래프 탐 안현기 2024.10.18 0 116
771 비정형 환경 아크 센싱 개선을 위한 중간값 기반 데이터 클러스터링 활용 기법 김희준 2024.10.17 2 101
770 그래프 구조 기반 K-Means를 사용한 간선 방문 지향 MCPP 이해성 2024.10.15 0 97
769 트랜스포머 기반의 폐암 슬라이드 이미지 자동분할에 대한 연구 이리나 2024.10.14 0 92
768 마스크 기반 재식별 최적화와 Multi o bject Tracking에서의 ID-Switc 유수빈 2024.10.14 0 102
767 Histone Modification Peak Imputation Using Mixture 김민수 2024.10.14 0 66
766 Shor 알고리즘 최적화를 위한 양자 회로에서의 곱셈 연산 조재한 2024.10.14 0 129